Monday, 16 April 2018

Autoregressive integrated moving average ppt


Os modelos ARIMA são, em teoria, a classe mais geral de modelos para prever uma série de tempo que pode ser feita para ser 8220stationary8221 por diferenciação (se necessário), talvez Em conjunto com transformações não-lineares, como logging ou deflação (se necessário). Uma variável aleatória que é uma série de tempo é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ele se move de forma consistente. Isto é, os seus padrões de tempo aleatório a curto prazo têm sempre o mesmo aspecto num sentido estatístico. Esta última condição significa que suas autocorrelações (correlações com seus próprios desvios prévios em relação à média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de poder permanece constante ao longo do tempo. Uma variável aleatória desta forma pode ser vista (como de costume) como uma combinação de sinal e ruído, eo sinal (se for aparente) poderia ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou rápida alternância no sinal , E poderia também ter uma componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, tipo de regressão) na qual os preditores consistem em atrasos da variável dependente e / ou atrasos dos erros de previsão. Ou seja: Valor previsto de Y uma constante e / ou uma soma ponderada de um ou mais valores recentes de Y e / ou uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores defasados ​​de Y., é um modelo autoregressivo puro (8220 auto-regressado8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y retardada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são defasagens dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não há maneira de especificar o erro 8222 como uma variável independente: os erros devem ser calculados em base período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros defasados ​​como preditores é que as previsões do modelo não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Portanto, os coeficientes em modelos ARIMA que incluem erros retardados devem ser estimados por métodos de otimização não-lineares (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags das séries estacionalizadas na equação de previsão são chamados de termos quotautorregressivos, os atrasos dos erros de previsão são chamados de quotmoving termos médios e uma série de tempo que precisa ser diferenciada para ser estacionária é dito ser uma versão quotintegrada de uma série estacionária. Modelos de Random-walk e tendência aleatória, modelos autorregressivos e modelos de suavização exponencial são casos especiais de modelos ARIMA. Um modelo ARIMA não sazonal é classificado como um modelo quotARIMA (p, d, q) quot, onde: p é o número de termos autorregressivos, d é o número de diferenças não sazonais necessárias para a estacionaridade e q é o número de erros de previsão defasados ​​em A equação de predição. A equação de previsão é construída como se segue. Em primeiro lugar, vamos dizer a d diferença de Y. o que significa: Note que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Pelo contrário, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação de previsão geral é: Aqui os parâmetros da média móvel (9528217s) são definidos de modo que seus sinais sejam negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) definem-los para que eles tenham mais sinais em vez disso. Quando números reais são conectados à equação, não há ambigüidade, mas é importante saber qual convenção seu software usa quando está lendo a saída. Muitas vezes os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230, etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionarizar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como a extração madeireira ou a deflação. Se você parar neste ponto e prever que a série diferenciada é constante, você tem apenas montado uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionária pode ainda ter erros autocorrelacionados, sugerindo que algum número de termos AR (p 8805 1) e / ou alguns termos MA (q 8805 1) também são necessários na equação de previsão. O processo de determinar os valores de p, d e q que são melhores para uma dada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns dos tipos De modelos não-sazonais ARIMA que são comumente encontrados é dada abaixo. ARIMA (1,0,0) modelo autoregressivo de primeira ordem: se a série é estacionária e autocorrelacionada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, mais uma constante. A equação de previsão neste caso é 8230, que é regressão Y sobre si mesma retardada por um período. Este é um modelo 8220ARIMA (1,0,0) constant8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (ele deve ser menor que 1 em magnitude se Y estiver parado), o modelo descreve o comportamento de reversão de média no qual o valor do próximo período deve ser 981 vezes 1 Longe da média como valor deste período. Se 981 1 for negativo, ele prevê o comportamento de reversão de média com alternância de sinais, isto é, também prevê que Y estará abaixo do próximo período médio se estiver acima da média neste período. Em um modelo autorregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 à direita também, e assim por diante. Dependendo dos sinais e magnitudes dos coeficientes, um modelo ARIMA (2,0,0) poderia descrever um sistema cuja reversão média ocorre de forma sinusoidal oscilante, como o movimento de uma massa sobre uma mola submetida a choques aleatórios . Se a série Y não for estacionária, o modelo mais simples possível para ela é um modelo randômico randômico, que pode ser considerado como um caso limitante de um modelo AR (1) em que o modelo autorregressivo Coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a variação média período-período (ou seja, a deriva a longo prazo) em Y. Este modelo poderia ser montado como um modelo de regressão sem interceptação em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não sazonal e um termo constante, é classificada como um modelo de ARIMA (0,1,0) com constante. quot O modelo randômico-sem-desvio seria um ARIMA (0,1, 0) sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: Se os erros de um modelo de caminhada aleatória são autocorrelacionados, talvez o problema possa ser corrigido adicionando um lag da variável dependente à equação de predição - Eu Pela regressão da primeira diferença de Y sobre si mesma retardada por um período. Isto resultaria na seguinte equação de predição: que pode ser rearranjada para Este é um modelo autorregressivo de primeira ordem com uma ordem de diferenciação não sazonal e um termo constante - isto é. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem suavização exponencial simples constante: Uma outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se que para algumas séries temporais não-estacionárias (por exemplo, as que exibem flutuações barulhentas em torno de uma média de variação lenta), o modelo de caminhada aleatória não funciona tão bem quanto uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com mais precisão a média local. O modelo de suavização exponencial simples usa uma média móvel exponencialmente ponderada de valores passados ​​para conseguir esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em um número de formas matematicamente equivalentes. Uma das quais é a chamada 8220error correction8221, na qual a previsão anterior é ajustada na direção do erro que ela fez: Como e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar uma suavização exponencial simples especificando-a como um modelo ARIMA (0,1,1) sem Constante, eo coeficiente MA (1) estimado corresponde a 1-menos-alfa na fórmula SES. Lembre-se que no modelo SES, a idade média dos dados nas previsões de 1 período antecipado é de 1 945, o que significa que tendem a ficar aquém das tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a média de idade dos dados nas previsões de 1 período de um modelo ARIMA (0,1,1) sem constante é de 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Quando 952 1 aproxima-se de 1, o modelo ARIMA (0,1,1) sem constante torna-se uma média móvel de muito longo prazo e como 952 1 Aproxima-se 0 torna-se um modelo randômico-caminhada-sem-deriva. Nos dois modelos anteriores discutidos acima, o problema dos erros autocorrelacionados em um modelo de caminhada aleatória foi fixado de duas maneiras diferentes: adicionando um valor defasado da série diferenciada Para a equação ou adicionando um valor defasado do erro de previsão. Qual abordagem é a melhor Uma regra para esta situação, que será discutida em mais detalhes mais adiante, é que a autocorrelação positiva é geralmente melhor tratada pela adição de um termo AR para o modelo e autocorrelação negativa é geralmente melhor tratada pela adição de um MA termo. Nas séries econômicas e de negócios, a autocorrelação negativa muitas vezes surge como um artefato de diferenciação. Portanto, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo de MA, é mais freqüentemente usado do que um modelo de auto-correlação positiva. Modelo ARIMA (1,1,0). ARIMA (0,1,1) com suavização exponencial simples constante com crescimento: Ao implementar o modelo SES como um modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente MA (1) estimado pode ser negativo. Isto corresponde a um factor de suavização maior do que 1 num modelo SES, o que normalmente não é permitido pelo procedimento de ajustamento do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de predição: As previsões de um período de adiantamento deste modelo são qualitativamente semelhantes às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem suavização exponencial linear constante: Os modelos lineares de suavização exponencial são modelos ARIMA que utilizam duas diferenças não sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma retardada por dois períodos, mas sim é a primeira diferença da primeira diferença - i. e. A mudança na mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: ela mede a quotaccelerationquot ou quotcurvaturequot na função em um dado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prevê que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: que pode ser rearranjada como: onde 952 1 e 952 2 são MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que Holt8217s modelo, e Brown8217s modelo é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões a longo prazo deste modelo convergem para uma linha recta cujo declive depende da tendência média observada no final da série. ARIMA (1,1,2) sem suavização exponencial linear de tendência amortecida constante. Este modelo é ilustrado nos slides acompanhantes nos modelos ARIMA. Ele extrapola a tendência local no final da série, mas aplana-lo em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem apoio empírico. Veja o artigo sobre "Por que a tendência de amortecimento" trabalha por Gardner e McKenzie e o artigo de "Rule of Gold" de Armstrong et al. para detalhes. É geralmente aconselhável aderir a modelos nos quais pelo menos um de p e q não é maior do que 1, ou seja, não tente encaixar um modelo como ARIMA (2,1,2), uma vez que isto é susceptível de conduzir a sobre-adaptação E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação de planilhas: modelos ARIMA como os descritos acima são fáceis de implementar em uma planilha. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear referindo-se a valores nas linhas precedentes das colunas A e C, multiplicado pelos coeficientes AR ou MA apropriados armazenados em células em outra parte da planilha. Um RIMA significa modelos de média móvel integrada. Univariada (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série baseada inteiramente em sua própria inércia. Sua principal aplicação é na área de previsão de curto prazo, exigindo pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes chamado Box-Jenkins (após os autores originais), ARIMA é geralmente superior a técnicas de suavização exponencial quando os dados são razoavelmente longos ea correlação entre as observações passadas é estável. Se os dados são curtos ou altamente voláteis, então algum método de suavização pode funcionar melhor. Se você não tiver pelo menos 38 pontos de dados, você deve considerar algum outro método que ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaridade. Estacionariedade implica que a série permanece a um nível bastante constante ao longo do tempo. Se houver uma tendência, como na maioria das aplicações econômicas ou de negócios, os dados NÃO são estacionários. Os dados também devem mostrar uma variação constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e crescendo a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem que estas condições de estacionaridade sejam satisfeitas, muitos dos cálculos associados ao processo não podem ser calculados. Se um gráfico gráfico dos dados indica nonstationarity, então você deve diferença a série. A diferenciação é uma excelente maneira de transformar uma série não-estacionária em uma estacionária. Isto é feito subtraindo a observação no período atual do anterior. Se essa transformação é feita apenas uma vez para uma série, você diz que os dados foram primeiramente diferenciados. Este processo elimina essencialmente a tendência se sua série está crescendo em uma taxa razoavelmente constante. Se ele está crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferença os dados novamente. Seus dados seriam então segundo diferenciados. Autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número específico de períodos separados estão correlacionados entre si ao longo do tempo. O número de períodos separados é geralmente chamado de lag. Por exemplo, uma autocorrelação no retardo 1 mede como os valores 1 intervalo de tempo são correlacionados um ao outro ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados dois períodos separados estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo a -1 implica uma correlação negativa alta. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma dada série em diferentes defasagens. Isto é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em séries temporais estacionárias em função dos parâmetros chamados auto-regressivos e de média móvel. Estes são referidos como parâmetros AR (autoregessive) e MA (médias móveis). Um modelo AR com apenas um parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo de ordem 1 X (t-1) (T) o termo de erro do modelo Isto simplesmente significa que qualquer valor dado X (t) pode ser explicado por alguma função de seu valor anterior, X (t-1), mais algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 período atrás. Naturalmente, a série poderia estar relacionada a mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente anteriores, X (t-1) e X (t-2), mais algum erro aleatório E (t). Nosso modelo é agora um modelo autorregressivo de ordem 2. Modelos de média móvel: Um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos parecem muito semelhantes ao modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros de média móvel relacionam o que acontece no período t apenas aos erros aleatórios que ocorreram em períodos de tempo passados, isto é, E (t-1), E (t-2), etc., em vez de X (t-1), X T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo MA pode ser escrito da seguinte forma. O termo B (1) é chamado de MA de ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e normalmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima diz simplesmente que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso dos modelos autorregressivos, os modelos de média móvel podem ser estendidos a estruturas de ordem superior cobrindo diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a construção de modelos que incorporem parâmetros de média móvel e autorregressiva. Estes modelos são muitas vezes referidos como modelos mistos. Embora isso torne uma ferramenta de previsão mais complicada, a estrutura pode de fato simular melhor a série e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas de AR ou MA parâmetros - não ambos. Os modelos desenvolvidos por esta abordagem são geralmente chamados de modelos ARIMA porque eles usam uma combinação de auto-regressão (AR), integração (I) - referindo-se ao processo inverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA é normalmente indicado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você tem um modelo autorregressivo de segunda ordem com um componente de média móvel de primeira ordem cuja série foi diferenciada uma vez para induzir a estacionaridade. Escolhendo a especificação certa: O principal problema no clássico Box-Jenkins está tentando decidir qual especificação ARIMA usar-i. e. Quantos parâmetros AR e / ou MA devem ser incluídos. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Ela dependia da avaliação gráfica e numérica das funções de autocorrelação da amostra e autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que parecem uma certa maneira. No entanto, quando você subir em complexidade, os padrões não são tão facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isto significa que os erros de amostragem (outliers, erros de medição, etc.) podem distorcer o processo de identificação teórica. Por isso, a modelagem ARIMA tradicional é uma arte e não uma ciência. Modelos de média móvel integrada (ARIMA) PowerPoint PPT Apresentação - Técnicas de previsão baseadas no suavização exponencial Hipótese geral para os modelos acima: os dados das séries temporais são representados pela soma de dois (Deterministc amp random) Ruído aleatório: gerado através de choques independentes para o processo Na prática: observações sucessivas mostram dependência serial - modelos ARIMA também são conhecidos como a metodologia Box-Jenkins muito popular. Adequado para quase todas as séries de tempo amp muitas vezes gerar previsões mais precisas do que outros métodos. Se não houver dados suficientes, eles podem não ser melhores na previsão do que as técnicas de decomposição ou suavização exponencial. Número recomendado de observações pelo menos 30-50 - Estacionaridade fraca é necessária - Espaço igual entre intervalos Modelos lineares para séries temporais - É um processo que converte a entrada xt em saída yt A conversão envolve valores passados, atuais e futuros da entrada Na forma de uma soma com pesos diferentes O tempo invariável não depende do tempo Fisicamente realizável: a saída é uma função linear dos valores atuais e passados ​​da entrada Em filtros lineares: a estacionariedade da série temporal de entrada também é refletida na saída Uma série temporal que satisfaça essas condições tende a retornar à sua média e flutuar em torno desta média com variância constante. Nota: A estrita estacionaridade requer, além das condições de fraca estacionaridade, que a série cronológica tem de preencher outras condições sobre a sua distribuição, incluindo a aspereza, a curtose, etc. - Tirar snaphots do processo em diferentes pontos de tempo. Ao longo do tempo, então série de tempo estacionária - A amp forte morrer lentamente ACF sugere desvios de estacionaridade Infinite Moving Average Input xt estacionário o processo linear com ruído branco série de tempo tt choques aleatórios independentes, com E (t) 0 amp A média móvel infinita Serve como uma classe geral de modelos para qualquer série temporal estacionária THEOREM (World 1938): Qualquer série temporária fracamente estacionária determinista yt pode ser representada como A série temporal estacionária pode ser vista como a soma ponderada das perturbações presentes e passadas Média móvel infinita : Impraticável para estimar os pesos infinitamente inútil na prática, exceto para casos especiais: i. Modelos de média móvel de ordem finita (MA). Pesos ponderados para 0, com exceção de um número finito de pesos ii. Modelos auto-regressivos de ordem finita (AR): os pesos são gerados utilizando apenas um número finito de parâmetros iii. Uma mistura de ordem finita auto-regressiva amplo média móvel modelos (ARMA) Processo de Ordem Mínima de Ordem Finita (MA) Processo médio móvel de ordem q (MA (q)) MA (q). (Q) Autocorelação de MA (q) Ajuda a identificar o modelo de MA ampère sua ordem apropriada como seus cortes fora após o atraso kr (K) nem sempre zero após o retardo q torna-se muito pequeno em valor absoluto após atraso q Processo de média móvel de primeira ordem MA (1) Autocovariância de MA (q) Autocorelação de MA (q) Estável Corridas curtas onde observações sucessivas tendem a se seguir Observações oscilam sucessivamente Ordem Segunda Ordem Média MA Processo Autocovariância de MA (q) Autocorelação de MA (q) A amostra ACF corta após o atraso 2 Ordem Finita Autoregressive Processo Teorema dos mundos: Número infinito de pesos, não é útil na modelagem de previsão de amp Processamento de MA de ordem finita: estimar um número finito de pesos, definir o outro igual a zero Perturbação mais antiga obsoleta para a próxima observação somente número finito de distúrbios contribuem para o valor atual das séries temporais Todas as perturbações do passado. Use modelos autorregressivos estimam infinitamente muitos pesos que seguem um padrão distinto com um pequeno número de parâmetros Processo Autoregressivo de Primeira Ordem, AR (1) Suponha. As contribuições dos distúrbios que estão no passado são pequenas em comparação com as perturbações mais recentes que o processo tem experimentado. Refletem as magnitudes decrescentes das contribuições das perturbações do passado, através de um conjunto infinito de pesos em magnitudes descendentes. Tais como Padrão de decaimento exponencial Os pesos nas perturbações a partir da perturbação atual e retrocedendo no passado: Processo autorregressivo de primeira ordem AR (1) AR (1) estacionário se Função de autocovariância AR (1) Função de autocorrelação AR (1) Para um processo estacionário AR (1) tem uma forma de decomposição exponencial As observações exibem movimentos de updown Processo Autoregressivo de Segunda Ordem, AR (2) Este modelo pode ser representado na forma infinita MA ampères fornecer as condições de estacionário para yt em termos de 1amp 2 Calcular os pesos A satisfazer a equação de diferença linear de segunda ordem A solução. Em termos de 2 raízes m1 e m2 de Condição de estacionaridade para conjugados complexos aib: AR (2) infinita MA representação: A. Resolver as equações de Yule-Walker recursivamente B. Solução geral Obtê-lo através das raízes m1 amp m2 associado com a Polinômio Caso I: m1, m2 raízes reais distintas c1, c2 constantes: pode ser obtido a partir de (0), (1) forma ACF: mistura de 2 termos de decaimento exponencial Pode ser visto como um modelo AR ajustado (1) para o qual a A expressão de decaimento exponencial simples como no RA (1) não é suficiente para descrever o padrão no ACF e assim, é adicionada uma expressão de decaimento adicional introduzindo o segundo termo de atraso yt-2 Caso II: m1, m2 de conjugados complexos na forma C1, c2: constantes particulares Forma ACF: fator de amortecimento sinusoidal úmido Período de freqüência R Caso III: uma raiz real m0 m1 m2m0 Forma ACF: padrão exponencial de decaimento Processo AR (2): yt40.4yt-10.5yt-2et Raízes do polinômio: Forma ACF real: mistura de 2 termos de decaimento exponencial AR (2) processo: yt40.8yt-1-0.5yt-2et Raízes Do polinômio: conjugados complexos Forma ACF: comportamento sinusoidal amortecido Processo Autoregressivo Geral, AR (p) Considere um modelo AR de ordem p Se as raízes do polinômio forem menores que 1 em valor absoluto AR (P) Condição prévia Pesos dos choques aleatórios Para equações de diferença linear de ordem p (ordem p) estacionária - satisfaz as equações de Yule-Walker - CAF pode ser encontrada a partir das p raízes do polinômio associado eg Raízes reais amp distintas. - Em geral as raízes não serão ACF reais. Mistura de decaimento exponencial e sinusoidal amortecido Processo MA (q): ferramenta útil para identificar a ordem do processo corta após o atraso k Processo AR (p): mistura de decaimento exponencial ampères sinusoidais amortecidas Falha ao fornecer informações sobre a ordem de AR Autocorrelação parcial Função três variáveis ​​aleatórias X, Y, Z amp Regressão simples de X em Z amp Y em Z Os erros são obtidos a partir de Correlação parcial entre X amp Y depois de ajustar para Z: A correlação entre X amp Y A correlação parcial pode ser vista como a correlação Entre duas variáveis ​​depois de ser ajustado para um fator comum que as afeta Função de autocorrelação parcial (PACF) entre yt amp yt-k A autocorrelação entre yt amp yt-k após ajuste para yt-1, yt-2, yt-k AR ) Processo: PACF entre yt amp yt-k para kgtp deve ser igual a zero uma série de tempo estacionária yt não necessariamente um processo AR Para qualquer valor fixo k. As equações de Yule-Walker para o ACF de um processo AR (p) Para qualquer dado k, k 1,2, o último coeficiente é chamado o coeficiente de autocorrelação parcial do processo a lag k Identificar a ordem de um processo AR usando o PACF

No comments:

Post a Comment