Thursday, 28 November 2019

Movendo médio processo de ordem 1


2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Os processos de erro de mediação móvel NavigationAutoregressive (erros ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando declarações FIT e simulados ou previstos usando declarações SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivos. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido por PROC MODEL como A função ZLAG deve ser usada para modelos MA para truncar a recursividade dos atrasos. Isso garante que os erros defasados ​​começam em zero na fase de latência e não propagam valores faltantes quando as variáveis ​​de período de atraso são perdidos e garantem que os erros futuros sejam zero em vez de faltar durante a simulação ou previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário Geral para Modelos ARMA O processo ARMA (p, q) geral tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro da faixa apropriada, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA geralmente funcionam se o modelo se encaixa bem nos dados eo problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo AR de alta ordem, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas de parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis ​​se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos do SASETS são os seguintes: PROCEDIMENTOS MÍNIMOS CONDUTAIS (Procedimentos ARIMA e MODELO) Procedimentos de mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG, ARIMA e MODELO) Procedimento somente) Hildreth-Lu, que exclui as primeiras p observações (procedimento MODEL somente) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais para estimar os termos de erro de média móvel não é o ideal porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados ​​iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar este problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro do intervalo de inversibilidade. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A Macro AR A macro AR do SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SASETS e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita autoregressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de Opção LIST para um Modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em intervalos selecionados. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Listagem do Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PR ER. OR - Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Autoresponder vetorial irrestrito Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​são exclusivos. Use um valor processname curto para o processo se as estimativas de parâmetro forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis ​​é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em defasagens selecionadas. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no retardo 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis ​​em vez de nos erros usando a opção TYPEV. Se você deseja modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de autorregressão vetorial, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de AR é chamado. Este exemplo modela o vetor Y (Y1Y2Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis ​​necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes termos AR e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por mais informações especificadas em chamadas AR posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist assume todos os defasagens 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SASETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de MA vetorial não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média Restrita de Vetores Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA, mas é aguardar informações adicionais especificadas em chamadas de MA mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Especifica a lista de defasagens em que os termos MA devem ser adicionados.8.4 Modelos de média móvel Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). Evidentemente, não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só irá alterar a escala da série, e não os padrões. É possível escrever qualquer modelo estacionário AR (p) como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Os modelos Invertible não nos permitem simplesmente converter modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.

No comments:

Post a Comment